10,0000+

Students Trained

15,000+

Students Placed

1000+

Placement
Companies

15Years

of Student Trust

\

Vsl

.

1 B’
B ul

]

CRENTTe
- ——
i (
\
EARFATE

M i w

i
'Iiiiiii

|-iﬂaq‘

“ns

= W‘ alltythought in

® @@ ® @ gqttworld

bt

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

COURSE CURRICULUM
Gen Al Developer Program

COURSE DURATION SESSION HOURS CASE STUDIES
3MONTHS 200HRS & PROJECTS

Foundations of Al & Machine Learning

1.Al & ML Overview

= Definitions: Al vs. ML vs. Deep Learning vs. Generative Al

= Key enterprise use cases & emerging roles
(Al Architect, Generative Al Developer)

2.ML Workflow & Best Practices

= Data ingestion, cleaning, feature engineering
= Training & validation (accuracy, precision, recall, F1)

3.Python Data Stack

= NumPy, Pandas, Matplotlib/Seaborn for EDA
= Git & GitHub for version control

Hands-on Lab

= Basic ML Project: A simple classification (e.g., Titanic survival) to
practice data workflow, evaluation metrics, and code versioning.

Deep Learning & Neural Networks

1.Neural Network Essentials

= Perceptron, forward & backward propagation, activation functions (ReLU, Sigmoid)

2.Hands-On Frameworks

= PyTorch or TensorFlow basics: tensor operations, training loops, model definition

3.CNNs & RNNs (Optional Basics)

= CNNs for image tasks (MNIST/CIFAR-10)
= RNNs/LSTMs for sequence data (time permitting)

% qualitythought.in %y O 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

Hands-on Lab

= Train a CNN on MNIST or CIFAR-10 in PyTorch or TensorFlow.
Performance & Scalability:

= Performance & Scalability

Transformer & Large Language Models (LLMs)

1.Transformer Architecture

= Self-Attention, Multi-Head Attention, Positional Embeddings
= Encoder-Decoder vs. Decoder-only (GPT-like)

2.LLM Ecosystem

= OpenAl GPT (3.5, 4), Google Gemini, Meta LLaMA
= Tokenization (BPE, WordPiece), embeddings, prompt engineering

3.Fine-Tuning vs. Prompt Engineering
= Fine-tuning techniques: LoRA, Adapters, parameter-efficient methods
= Crafting effective prompts (few-shot, chain-of-thought, system prompts)

Hands-on Lab

= Prompt Engineering with OpenAl GPT or local LLaMA for text generation.

= Intro to Fine-Tuning: Optional short demonstration of a
parameter-efficient fine-tuning method.

New Emphasis

= Experience in fine tuning open-source models:
lay foundational concepts for advanced tuning in subsequent weeks.

New Emphasis
= Experience in fine tuning open-source models:
lay foundational concepts for advanced tuning in subsequent weeks.

% qualitythought.in %y O 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

Retrieval-Augmented Generation (RAG)

RAG Fundamentals

= Motivation: factual grounding to reduce hallucinations
= Typical pipeline: document chunking, indexing, retrieval, generation

Vector Databases & Embeddings

= Pinecone, Chroma, Weaviate, Milvus
= Embedding models: OpenAl Embeddings, Sentence Transformers

Vector Databases & Embeddings

= Pinecone, Chroma, Weaviate, Milvus

= Embedding models: OpenAl Embeddings, Sentence Transformers
Implementing RAG Pipelines

= Index creation & query mechanism
= Simple Q&A or chat pipeline (LangChain or similar)

Hands-on Lab

= RAG Q&A: Index a small dataset (FAQ, policy docs) in Pinecone or Chroma.

= Build a basic Q&A system retrieving relevant chunks + generating final answers.
New Emphasis

= Discuss benchmarking retrieval results (precision/recall for domain queries).
= Introduce the concept of domain-specific embeddings for reliability & performance.

Agentic Al Workflows

What is an Al Agent?

= Autonomy, multi-step reasoning, planning

Agent Frameworks

= LangChain Agents, Semantic Kernel, or Crew Al (if relevant)

Tool & API Orchestration

= Setting up “tools” (e.g., weather API, DB queries, calculator)
= Chain-of-thought prompting & multi-step decision-making

% qualitythought.in %y O 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

Hands-on Lab

= Agentic Al Workflow: Build a simple Al Agent that calls a mock external API
(e.g., weather or stock data).

= Showcase multi-step reasoning and skill-based agent design.

New Emphasis

= Innovative Al Applications: lllustrate how to develop agentic workflows for business or
industrial contexts (process automation, specialized “skills”).

Fine-Tuning & Benchmarking Domain-Specific Generative Models

1.Advanced Fine-Tuning Techniques

= LoRA, Adapters, QLoRA, or full fine-tuning for large open-source models (LLaMA, GPT-Neo)
= Domain adaptation: collecting domain-specific datasets

2.Bench marking & Performance Improvement

= Reliability metrics for generative tasks: BLEU, ROUGE, perplexity for text; FID for images
= Scalability considerations (distributed training, multi-GPU setups)

3.Bench marking & Performance Improvement

= Reliability metrics for generative tasks: BLEU, ROUGE, perplexity for text; FID for images
= Scalability considerations (distributed training, multi-GPU setups)

4.Bias & Robustness

= Reliability metrics for generative tasks: BLEU, ROUGE, perplexity for text; FID for images
= Scalability considerations (distributed training, multi-GPU setups)

Hands-on Lab

= Domain-Specific Fine-Tuning: Fine-tune an open-source LLM on
a small domain dataset, measure improvements vs. baseline.
= Evaluate throughput, latency, memory usage for scalability.

New Emphasis

= irectly addresses “Fine-tune and benchmark Generative Al models using domain-specific
datasets, focusing on performance improvement, reliability, and scalability

% qualitythought.in %y ® 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

MLOps, AlOps & Production Deployment

1.Cloud Platforms & AlOps Pipelines
= Automated deployment & CI/CD with AlOps tools (e.g., Jenkins, GitHub Actions, Tekton)

2.Containerization & Serving

= Docker basics, model serving patterns (Kubernetes vs. serverless)
= REST/GraphQL APIs around your generative Al model (FastAPI/Flask)

3.0bservability & Monitoring

= Logging, metrics, error handling, drift detection
= Setting up monitoring dashboards to track model performance & reliability

Hands-on Lab

= AlOps Pipeline: Containerize your fine-tuned RAG or Al Agent application and deploy to
a chosen platform (AWS ECS, GCP Cloud Run).
= Integrate logs & monitoring for real-time performance tracking.

New Emphasis

= Explicit coverage of AlOps for multi-environment deployment.
= Revisit Agentic Al to show how skill-based agents can be deployed in production pipelines

% quallfythought.in % ® 99591 61031

—~ . ®
QualityThought
~Transforming Dreams! Redefining Future!

1.Responsible Al Principles

= Bias, fairness, transparency in generative Al
= Prompt security, data privacy, compliance (GDPR, HIPAA)
= Testing solutions against Responsible Al guidelines

2.Review & Synthesis

= Recap from ML basics to advanced RAG & Al Agents
= Summaries of fine-tuning and large-scale MLOps

3.Career Prep

= Resume/LinkedIn updates emphasizing Al experience
= Interview readiness (ML theory, system design for LLM-driven apps)
= Portfolio building (GitHub, Hugging Face Spaces)

Hands-on Lab

= Responsible Al: Evaluate your fine-tuned model or agentic
pipeline for bias and policy compliance.

= Conduct a final “mini demo” highlighting best practices.

New Emphasis

= Reinforces “Knowledge of Responsible Al principles and ways to implement
it in solution, testing the solution against the defined principles.”
= Ties responsible Al checks into final project readiness

Capstone Workshop

After the 8-week program, participants engage in a Capstone Workshop focusing on
end-to-end solution development:

1.Project Scoping

= Use domain-specific datasets (text, images, logs, etc.)
relevant to a chosen business or industrial scenario.
= Define performance, reliability, and scalability goals.

2.Data Prep & Model Fine-Tuning

= Apply advanced tuning techniques (LoRA, QLoRA, etc.) on an open-source LLM.
= Benchmark the model with domain metrics (e.g., BLEU, ROUGE, FID, perplexity).

% qualitythought.in %y O 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

Python Foundations

1.Python Basics

= Data types (strings, lists, tuples, dicts), control flow, functions
= OOP concepts (optional overview)

2.Environment Setup

= Virtual environments (venv, conda)
= Basic Git & GitHub for version control

3. Data Handling
= File /O (CSV, JSON)
= Simple reading/writing with Pandas

Hands-On Lab

= Lab 1: Build a Python script to parse a CSV and produce basic summary stats.
= Push code to GitHub.
Outcome: Students establish a solid Python base, environment management, and Git.

Python Data Structures & ML Basics

1. Advanced Python Data Structures

= List/dict comprehensions, sets, decorators (optional)

2.Intro to Machine Learning

= Overview of scikit- learn
= Train/test splitting, simple linear/logistic regression

3. Evaluation Metrics

= Accuracy, precision, recall, F1

Hands-On Lab

= Lab 2: Build a simple scikit-learn classifier (e.g., Iris dataset).

= Evaluate model metrics, visualize confusion matrix.

Outcome: Comfortable with Python data manipulation and basic ML pipeline.

% qualitythought.in %y O 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

FastAPI Essentials

1. FastAPI Introduction

= RESTful APl concept, asynchronous I/O
= Core features (routers, Pydantic models)

2.Basic CRUD

= Handling GET/POST/PUT/DELETE
= Path & query parameters

3. API Security
= Oauth2 basics, JWT tokens (high-level overview)

Hands-On Lab

= Lab 3: Create a basic FastAPI app with CRUD endpoints for a
mock resource (e.g., “employees”).

= Test endpoints using Postman or curl.

Outcome: Ability to scaffold a REST API in Python using FastAPI.

FastAPI Deep Dive & Unit Testing

1. Pydantic Models & Validation

= Request/response schemas, data validation

2. Unit Testing

= Pytest basics, mocking & fixtures
= Testing FastAPI endpoints

3. Deployment Packaging

= Requirements.txt or Pipfile
= Dockerfile basics (intro only)

Hands-On Lab

= Lab 4: Extend the Fast APl app with validated data models and write pytest unit tests.
= Optionally create a Docker file for local container testing.

Outcome: Students can build a tested, container-ready API with validated schemas

% qualitythought.in %y O 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

Deploying Python APIs on AWS

1.AWS Overview

= Key services: AWS ECS, AWS Elastic Beanstalk, AWS Lambda + APl Gateway
= |AM basics (roles, policies)

2. Docker & AWS Deployment

= Building Docker images
= Pushing to AWS ECR (Elastic Container Registry)
= Running containers on ECS or Elastic Beanstalk

3. Serverless (Optional)
= Brief mention of AWS Lambda

Hands-On Lab

= Lab 5: Containerize the FastAPI application and deploy to AWS ECS.
= Validate endpoints via public URL.
Outcome: Real-world exposure to container-based deployment on AWS.

Deploying Python APIs on Azure

1. Azure Basics

= Resource groups, Azure Container Registry (ACR)
= Azure Web App for Containers or Azure Container Instances (ACI)

2.Deployment Pipeline

= Docker image push/pull from ACR
= Setting environment variables & app settings

3. Monitoring & Logging
= Azure Monitor, App Insights for logs and metrics

Hands-On Lab

= Lab 6: Deploy the same Dockerized FastAPI app to Azure Web App for Containers.
= Review logs and basic metrics in Azure portal.

Outcome: Students learn how to replicate a container deployment process on Azure.

% qualitythought.in %y O 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

Deploying Python APIs on GCP

1. GCP Overview
= Services: Cloud Run, GKE, App Engine

2. Cloud Run Deployment

= Containerizing (Docker)
= Submitting images to Google Container Registry
= Configuring environment variables and concurrency

3. CI/CD
= GitHub Actions or GCP Cloud Build integration

Hands-On Lab

= Lab 7: Deploy the same FastAPI container to GCP Cloud Run.
= Validate auto-scaling behavior by sending multiple requests.
= Outcome: Students see how to deploy container-based Python services on GCP.

Building a Simple ML Model

1. GCP Overview

= scikit-learn pipeline (classification/regression)
= Basic hyperparameter tuning (grid/random search)

2. Saving & Loading Models

= Joblib/pickle or ONNX format
= Best practices for reproducibility

3. Integration with FastAPI

= Exposing a model inference endpoint
= Handling model load in memory or on demand

Hands-On Lab
= Lab 8: Create a simple ML model
(e.g., sentiment classifier or regression model) using scikit-learn.
= Integrate with FastAPI: A /predict endpoint that loads the model and returns predictions.
Outcome: Demonstrate how to build a small ML model and wrap it in an API for inference.

% qualitythought.in %y O 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

Deploying the ML Model on AWS, Azure & GCP

1. Model Serving Approaches

= Containerizing an ML model + FastAPI into one container
= Dealing with environment & memory constraints (esp. for large models)

2. Cloud-Specific Details

= AWS: ECS or SageMaker (intro only)

= Azure: Web App for Containers + model storage
= GCP: Cloud Run or Vertex Al (intro only)

3. Best Practices

= Logging predictions, monitoring model performance in each cloud
= Cost management & scaling concerns

Hands-On Lab
= Lab 9: Deploy the ML + FastAPI container to each cloud (or pick your favorite).
= Validate that your inference endpoint is accessible, stable, and logs performance metrics.
Outcome: Students learn to host a simple ML model on AWS, Azure, and GCP,
reinforcing multi-cloud concepts with a working example.

Hands-On Lab

= Lab 10: Final Project: A minimal end-to-end pipeline from local dev

= Docker container

= ML model

= cloud deployment.

Outcome: A portfolio-ready final project showcasing a containerized ML-powered API
deployed on at least one major cloud provider.

% qualitythought.in %y O 99591 61031

(:J;),ualityThought®

Transforming Dreams! Redefining Future!

Summary of Curriculum

= Python & FastAPI: Students learn Python basics and build robust REST APIs.
= Testing & Containerization: Master unit testing (pytest) and Docker packaging.
= Cloud Deployments: Deploy the same containerized application to AWS, Azure, and GCP.

= Building & Hosting an ML Model: Integrate a simple
scikit-learn model into FastAPl and deploy to the cloud.

= Final Capstone: A fully tested, containerized
ML solution running in production-like cloud environments.

By the end, participants will be confident in Python fundamentals, APl development, and
deploying ML-driven apps across multiple cloud platforms—an essential skill set for
developers moving toward Generative Al and more advanced ML solutions.

% qualitythought.in %y O 99591 61031

ument . get
ument .getEl

ontent of
a href="#>

sﬁan(shown, hidden) { =

14 Content of page
15 <a href="#" onc

Our Students Are Placed In

Cl-OUD (CloudCover Cognizant S Com— \Med'tronlc\
*aotncs Deloitte Foray | gemee
@@] “

) Mindes (S 7007 medoud |
(VirtUSa) P 7 e @OLIX

SOLUGENIX i / i \UI')S€aZ
bt = 5 e J

Technologies Pvt Ltd

uality Thought © 99591 61031
0,

Quality Thought Infosystems India (P) Ltd.
#302, Nilgiri Block, Ameerpet, Hyderabad-500016 | www.qualitythought.in | info@qualitythought.in

