R INUD

INNOVATIVE PLACEMENT SOLUTIONS

Powered By ®

QualityThought

Learn from Industry Experts

|

* * *
i

100 % JOB

GAURANTEE
* o x

WITH 100% JOB GAURUNTEE

20

Python  Django

Pythonzdjango
COURSE + INTERNSHIP

www.ihubtalent.com



\
\
100% JOB GUARANTEED

' PYTHON COURSE CURRICULUM
\

\

\

|

|

COURSE DURATION SESSION HOURS
5 WEEKS 60 HOURS

REALTIME PRACTICE

KEY HIGHLIGHTS

Only EdTech with 100% Internship based and job guarantee training
Institute backed by strong IIT alumina Team

More than 10,000 + success stories created

Partnered and serving 100+ clients right from the inception of the firm
Parent company Quality Thought No #1 providing placements since 2010
Experienced IT Architects, subject matter experts as advisory in the board
Guaranteed Internship Opportunity (3 to 6Months) for every participant
Backed by strong Internal human resource team enabling quick placements
Special guidance to students to win jobs with highest packages

NN N N N N N N YN

TRAINING HIGHLIGHTS
|

7 Industry ready course roaster designed by architects and subject matter

| experts

72 Proven content, creating gateway to world of Job opportunities

7 Practical & detailed approach, everyone can understand and perform to excel
7 Subject matter experts as trainers

2 Not just learning, Learn by doing methodology

72 Access to Instant recorded live Class videos shared

72 Personalized attention and guidance to accelerate the learning

72 Member access to private group to get instant doubt clarifications

72 Guest lectures from leading MNC Companies

www.ihubtalent.com




[PYTHONe

the Future Technology

4th Most Used 85% of the Time
Programming Language Python was used as a primary
in 2021, 44.1% of developers programming Language for the
worked with it devlopment

Most Popular Uses of Python

40% 40%

Machine Web
Learning Development

There are now 8.2 million developers in the world who code using Python and that
Population is now larger than those who build in Java, who number 7.6 million

Source -SlashData

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Python - Programming from Absolute Beginning - Introduction to Computer Programs

Introduction to Programming Languages - Translating code into something that the computer
understands - Syntax and the building blocks of a programming language

Types of Applications
Standalone applications, Client-Server Applications, Web applications
Mobile Applications ,Distributed applications, Cloud-based applications

Software Projects and How We Organize Our Code
Working with software projects , Working with packages to share code
Avoiding conflicts with namespaces

Sequence — The Basic Building Block of a Computer Program
Working with Data — Variables

Declaring and initializing variables , Primitive data types
Composite type

Top Companies Using P

Program Control Structures
Controlling the execution path, GO g I e
Selection with the if and switch statement
Iteration with the for loop, Iteration with the while loop
Iterating over sequences using for each

Understanding Functions
Deciding what goes into a function, Writing a function
Returning values from a function ,Function arguments,

Functions in action, Local and global variables amazon
S

When Things Go Wrong — Bugs and Exceptions
Understanding software bugs , types of software bugs
Finding bugs using a debugger

Programming Paradigms
Understanding structured programming , object-oriented programming ,
functional programming - logic programming

Programming Tools and Methodologies
Understanding version control systems
Unit testing, Integration testing , Other types of tests

Software releases
Understanding software deployment Understanding software deployment

Deployment Automation
Code maintenance

www.ihubtalent.com




® |
INNOVATIVE PLACEMENT SOLUTIONS

Software deployment process methodologies
Waterfall development , Spiral model
Agile development

Code Quality
Defining code quality , Writing code with readability in mind
Writing code with efficiency in mind

Practical Version Controlling with Git,
Software defect management using JIRA
Understanding Agile project Management using Scrum

Introduction to Python
Top Companies Using @
A Taste of Python
Mysteries , Little Programs
A Bigger Program,  Python in the Real world
Why Python? , Why Not Python?

Installing Python, Running Python , Moment of Zen Quora

Data: Types, Values, Variables, and Names
Python Data are objects , Types, Mutability, Literal Values
Variables , Assignment, Variables are Names, Not Places
Assigning to Multiple Names, Reassigning a Name
Copying, Choose Good Variable Names

Numbers
Boolean
Integers, Literal Integers, Integer Operations ,Integers and Variables
Precedence, Bases, Type Conversions, How Big is int?
Floats, Math Functions

Eventbrite

Choose with if
Comment with #, Continue Lines with \
Compare with if, elif and else, What is True
Do Multiple Comparisons with in

Text Strings
Creating with Quotes
Creating with str(), Escape with \
Combine by Using +, Duplicate with +
Get a Character with [], Get a Substring with a Slice
Get Length with len() , Split with strip()
Search and Select, Case, Alignment
Formatting, Oldstyle: %,
New styles: {} and format(),
Newest Style: f-string ,

www.ihubtalent.com




Recursion- Async Functions
Exceptions
Object-Oriented Design

What are Objects?

Simple Objects
Define a Class with class,
Attributes
Methods, Initialization

Inheritance
Inherit from a Parent Class, Override a Method
Add a Method, Get Help from your Parent with super()
Multiple Inheritance , Mixins

In Self Defense

Attribute Access
Direct Access
Getters and Setters
Properties for Attribute Access
Properties for Computed Values
Name Mangling for privacy
Class and Object Attributes

Method Types
Instance Methods
Class Methods
Static Methods
Duck Typing
Magic Methods
Aggregation and Composition
When to Use Objects or Something else
Named Tuples
Dataclasses
Attrs

Objects Oriented Python

Object Oriented Design
Object-Oriented Design
Introducing object-oriented
Objects and classes
Specifying attributes and behaviors
Hiding details and creating the public interface
Composition
Inheritance - Case Study

Objects in Python
Objects in python
Creating python classes
Modules and packages

@ |
INNOVATIVE PLACEMENT SOLUTIONS

Top Companies Using ?

M Hoteis.com

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

More String Things

Loop with while and for
Repeat with while
Cancel with break, Skip Ahead with continue
Check break Use with else,
Iterate with for and in
Cancel with break, Skip Ahead with continue, Check break Use with else
Generate Number Sequences with range() , Other Iterators
Tuples and Lists
Tuples
Create with Commas and ()
Create with tuple()
Combine Tuples by Using +
Duplicate Items with *

Compare Tuples Top Companies Using P
Iterate with for and in
Modify a Tuple
Lists
Create with [], Create or Convert with list() Q
Create from String with split() uora

Get an Item by [ offset ], Get Items with a Slice

Add an item to the End with append(),

Add an Item by offset with insert()

Duplicate All items with *, Combine Lists by Using extend() or +
Change an item by [ offset ], Change Items with a Slice
Delete an Item by Offset with del,

Delete an Item by Value with remove()

Get an Item by Offset and Delete It with pop()

Delete All items with clear(),

Find an Item's Offset by Value with index()

Test for a Value with in.,

Count Occurrences of a Value with count()

Convert a List to a String with join()

Reorder Items with sort() or sorted()

Get Length with len()

Assign with =, Copy with copy(), list() or a Slice

Copy everything with deepcopy()

Compare Lists(), Iterate with for and in

Iterate Multiple Sequences with zip()

Create a List with a Comprehension- Tuples vs Lists

Evehtbrite

Dictionaries and Sets
Dictionaries
Create with {}
Create with dict()

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Convert with dict()
Add or Change an Item by [ key ]
Get All Keys with keys()
Get All Values with values()
Get All Key-Value Pairs with items()
Get Length with len ()
Combine Dictionaries with {**a, **b}
Combine Dictionaries with update()
Delete an Item by Key with del
Get an Item by Key and Delete it with pop()
Delete All Items with clear()
Assign with =
Copy with copy()
Copy Everything with deepcopy()
Compare Dictionaries
Iterate with for and in Top Companies Using f,
Dictionary Comprehensions
Sets
Create with set()
Convert with set() J
Get Length with len() yahoo.
Add an Item with add()
Delete an Item with remove()
Iterate with for and in
Combinations and Operators
Set Comprehensions
Create an Immutable Set with frozenset()

You
Tube

Define a Function with def
Call a Function with Parentheses
Arguments and Parameters
None is useful
Positional arguments
Keyword Arguments
Specify Default Parameter Values
Explode/Gather Positional Arguments with *
Explode/Gather Keyword Arguments with **
Keyword-only Arguments
Mutable and Immutable Arguments
Docstrings
Functions are First-Class Citizens
Inner Functions
Closures
Anonymous Functions: lambda
Generators
Decorators
Namespaces and Scope
Uses of _and __ in Names

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Organizing module content

Who can access my data? - Third-party Libraries - Case Study
When Objects are Alike

When Objects are Alike

Basic Inheritance

Multiple Inheritance

Polymorphism

Abstract base classes

Case Study

Exceptions
Raising exceptions
Case Study

When to Use Object-Oriented Programming
When to use Object-Oriented Programming Top Companies Using f,
Treat objects as objects
Adding behaviors to class data with properties
Manager objects
Case Study

P PaypPal

Python Data Structures
Python Data Structures
Empty Objects
Tuples and named Tuples
Data classes, Dictionaries
Lists, Sets, Extending built-in functions
Case Study

Python Object-Oriented Shortcuts
Python Object-Oriented Shortcuts ‘

Python built in functions Dropbox

An alternative to method overloading
Functions are objects too
Case Study

Strings and Serialization
Strings and Serialization
Strings
Regular expressions
Filesystem paths
Serializing objects
Case Study

The Iterator Pattern
The Iterator Pattern
Design patterns in brief

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Iterators - Comprehensions

Generators - Coroutines - Case Study
Python Design Patterns

The decorator Pattern

The observer Pattern

The Strategy Pattern

The State Pattern

The Singleton Pattern

The template Pattern

The adapter Pattern

The facade Pattern

The flyweight Pattern

The command Pattern

The abstract factory Pattern

The composite Pattern

Top Companies Using ﬂ

Testing Object-Oriented Programs
Testing Object-Oriented Programs
Why test? - Unit testing

Testing with pytest e
Imitating expensive objects Sp{)tlfy

How much testing is enough- Case Study

Concurrency
Concurrency
Threads
Multiprocessing
Futures
Aysnc |0 - Case Study

-~ A

¥ freelancer

Modules, Packages, and Goodies
Modules and import Statement
Import a Module
Import a Module with Another Name
Import Only What You want from a Module
Packages
The Module Search Path
Relative and Absolute Imports
Namespace Packages , Modules Vs Objects
Goodies in the Python Standard Library
Handle Missing Keys with setdefault() and defaultdict()
Count Items with Counter()
Order by Key with OrderedDict() - Deque
Iterate over Code Structures with itertools
Print Nicely with pprint() -Get Random
More Batteries: Get Other Python Code -

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Virtual Environments
Software Testing and Test-Driven Development

Getting Started with Software Testing - Introducing software testing and quality control

Test plans
Introducing automatic tests and test suites
Multiple test cases, Organizing tests

Introducing test-driven development and unit tests
Test-driven development , Test units
Understanding integration and functional tests
Integration tests , Functional tests

Understanding the testing pyramid and trophy

The testing pyramid, The testing trophy

Testing distributions and coverage Top Companies Using e

Test Doubles
Introducing test doubles
Using dummy objects R
Replacing components with stubs @ PlntereSt
Checking behaviors with spies
Using mocks
Replacing dependencies with fakes
Understanding acceptance tests and doubles
Managing dependencies with dependency injection
Using dependency injection frameworks

Test-Driven Development (TDD) ShUttEfSt".:Ck@)
Starting projects with TDD

Building applications, the TDD way
Preventing regressions

Scaling the Test Suite
Scaling tests
Moving e2e to functional
Working with multiple suites
Compile suite , Commit tests, Smoke tests
Carrying out performance tests
Enabling continuous integration , Performance testing

PyTest for Python Testing
Running tests with PyTest
Writing PyTest fixtures , Using fixtures for dependency injection
Managing temporary data with tmp_path
Testing 1/0 with capsys, Running subsets of the test suites

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Dynamic and Parametric Tests and Fixtures
Configuring the test suite
Generating fixtures
Generating tests with parametric tests

Using Behavior-driven development

Writing acceptance tests

Writing first test, Defining a feature file

Declaring the scenario, Running the scenario test

Further setup with the And step

Performing actions with the When step

Assessing conditions with the Then step

Embracing specifications by example

Top Companies Using P

PyTest Essential Plugins

PyTest Essential Plugins

Using pytest-cov for coverage reporting

Coverage as a service

Using pytest-benchmark for benchmarking

Comparing benchmark runs

Using flaky to rerun unstable tests

Using pytest-testmon to rerun tests on code changes

Running tests in parallel with pytest-xdist

Managing Test Environments with Tox
Introducing Tox
Testing multiple python versions with Tox
Using environments for more that Python Versions

Evehtbrite

Playing with data (text and binary)
Text Strings: Unicode
Python 3 Unicode Strings
UTF-8, Encode
Decode, HTML Entities
Normalization

Text Strings: Regular Expressions
Find Exact Beginning Match with match()
Find FirstMatch with search() , Find All Matches with findall()
Split at Matches with split() , Replace at Matches with sub()
Patterns: Special Characters, Patterns: Using specifiers
Patterns: Specifying match() Output

Binary Data
Bytes and bytearray
Convert Binary Data with struct
Other Binary Data Tools

www.ihubtalent.com




| | I
Convert Bytes/String with binascii() - BitOperators @ lNNOVATNEpLACEMENTsomons

Calendars and Clocks
Leap Year, The datetime module , Using the time module
Read and Write Dates and times
All the Conversions, Alternative Modules

Files and Directories
File Input and Output
Create or Open with open(), Write a Text File with print()
Write a Text File with write() ,
Read a Text File with read(), readline(), or readlines()
Write a Binary File with read() ,Read a Binary File with read()
Close Files Automatically by using with, Change Position with seek()

Memory Mapping

File Operations
Check existence with exists()
Check Type with isfile()
Copy with copy()
Changing Name with rename()
Link with link() or symlink()
Change permissions with chmod(), Change Ownership with chown() faCEbOOk
Delete a File with remove()

Top Companies Using P

Directory Operations
Create with mkdir(),
Delete with rmdir()
List contents with listdir(),
Changing current directory with chdir()

List Matching Files with glob()
Pathnames, ByteslO and StringlO er
Processes and Concurrency
Program and Processes
Create a Process with subprocess
Create a Process with multiprocessing
Kill a Process with terminate

Get System Info with os
Get Process Info with psutil

Command Automation

Invoke

Other Command Helpers
Concurrence

Queues

Processes

Threads - Concurrent.futures

Green Threads and gevent

www.ihubtalent.com




| | I
Twisted @ INNOVATIVE PLACEMENT SOLUTIONS

Asyncio, Redis - Beyond Queues
Effective and Performant Python

Pythonic Thinking
Follow PEP 8 Style Guide
Differences between bytes and str
Interpolated F-strings over C-style Format strings and str.format
Writing helper functions instead of complex expressions
Multiple Assignment Unpacking Over Indexing
Prefer enumerate over range
Using zip to process Iterators in Parallel
Avoid Else blocks after for & while loops
Prevent Repetition with Assignment Expressions

Lists and Dictionaries
Know How to Slice Sequences
Avoid Striding and Slicing in a Single Expression, Prefer Catch-All unpacking over slicing
Sort by Complex Criteria Using the key parameter
Be Cautious when relying on dict insertion Ordering
Prefer get Over in and KeyError to Handle Missing Dictionary Keys
Prefer default dict Over setdefault to Handle Missing Items in Internal State
Know How to Construct Key-Dependent Default Values with __missing__

Functions
Never Unpack more than three variables when functions return multiple values
Prefer Raising exceptions to Returning None
Know How Closures interact with Variable Scope
Reduce Visual Noise with Positional Arguments
Provide Optional Behavior with Keywork Arguments
Use Node and Docstrings to Specify Dynamic Default Arguments
Enforce Clarity with Keyword-Only and Positional-Only Arguments
Define Function Decorators with functools.wraps

Comprehensions and Generators
Use Comprehensions Instead of map and filter
Avoid More Than Two Control Subexpressions in Comprehensions
Avoid Repeated Work in Comprehensions by Using Assignment Expressions
Consider Generators Instead of Returning Lists
Be Defensive When Iterating Over Arguments
Consider Generator Expressions for Large List Comprehensions
Compose Multiple Generators with yield from
Avoid Injecting Data into Generators with send
Avoid Causing State Transitions in Generators with throw
Consider itertools for Working with Iterators and Generators

Classes and Interfaces
Compose Classes Instead of Nesting Many Levels of Built-in Types
Accept Functions Instead of Classes for Simple Interfaces

www.ihubtalent.com




| | I
Use @classmethod Polymorphism to Construct ObjECtS Generically @ INNOVATIVE PLACEMENT SOLUTIONS

Initialize Parent Classes with super
Consider Composing Functionality with Mix-in Classes
Prefer Public Attributes Over Private Ones
Inherit from collections.abc for Custom Container Types

Meta classes and Attributes
Use Plain Attributes Instead of Setter and Getter Methods
Consider @property Instead of Refactoring Attributes
Use Descriptors for Reusable @property Methods
Use _getattr_,  getattribute_ , and __ setattr__ for Lazy Attributes
Validate Subclasses with __init_subclass__
Register Class Existence with __init_subclass__
Annotate Class Attributes with __set_name__
Prefer Class Decorators Over Metaclasses for Composable Class Extensions

Concurrency and Parallelism Top Companies Using e
Use subprocess to Manage Child Processes

Use Threads for Blocking /0, Avoid for Parallelism
Use Lock to Prevent Data Races in Threads
Use Queue to Coordinate Work Between Threads
Know How to Recognize When Concurrency Is Necessary
Avoid Creating New Thread Instances for On-demand Fan-out quEbOOk
Understand How Using Queue for Concurrency Requires Refactoring
Consider ThreadPoolExecutor -
When Threads Are Necessary for Concurrency
Achieve Highly Concurrent /O with Coroutines
Know How to Port Threaded I/0 to asyncio
Mix Threads and Coroutines to Ease the Transition to asyncio
Avoid Blocking the asyncio Event Loop to Maximize Responsiveness

Consider concurrent.futures for True Parallelism l I ber

Robustness and Performance
Take Advantage of Each Block in try/except/else/finally
Consider contextlib and with Statements for Reusable try
Use datetime Instead of time for Local Clocks
Make pickle Reliable with copyreg
Use decimal When Precision Is Paramount
Profile Before Optimizing
Prefer deque for Producer& Consumer Queues for Producer—Consumer Queues
Consider Searching Sorted Sequences with bisect
Know How to Use heapq for Priority Queues
Consider memoryview and bytearray for Zero-Copy Interactions with bytes

Testing and Debugging
Use repr Strings for Debugging Output
Verify Related Behaviors in TestCase Subclasses
Isolate Tests from Each Other with setUp, tearDown, setUpModule, and tearDownModule
Use Mocks to Test Code with Complex Dependencies

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Encapsulate Dependencies to Facilitate Mocking and Testing
Consider Interactive Debugging with pdb
Use tracemalloc to Understand Memory Usage and Leaks

Collaboration

Know Where to Find Community-Built Modules
Use Virtual Environments for Isolated and Reproducible Dependencies
Write Docstrings for Every Function, Class, and Module
Use Packages to Organize Modules and Provide Stable APIs
Consider Module-Scoped Code to Configure Deployment Environments
Define a Root Exception to Insulate Callers from APls
Know How to Break Circular Dependencies
Consider warnings to Refactor and Migrate Usage
Consider Static Analysis via typing to Obviate Bugs
Top Companies Using P
Understanding Performant Python
The Fundamental Computer System
Computing Units
Memory Units
Communications Layers
Putting the Fundamental Elements Together
dealized Computing Versus the Python Virtual Machine
So Why Use Python?

How to Be a Highly Performant Programmer
Good Working Practices

Profiling to Find Bottlenecks

e s ASANA

Profiling Efficiently

Introducing the Julia Set

Calculating the Full Julia Set

Simple Approaches to Timing—print and a Decorator
Simple Timing Using the Unix time Command

Using the cProfile Module

Visualizing cProfile Output with SnakeViz

Using line_profiler for Line-by-Line Measurements
Using memory_profiler to Diagnose Memory Usage
Introspecting an Existing Process with PySpy

Bytecode: Under the Hood
Using the dis Module to Examine CPython Bytecode
Different Approaches,
Different Complexity

Unit Testing During Optimization to Maintain Correctness
No-op @profile Decorator
Strategies to Profile Your Code Successfully

www.ihubtalent.com




Asynchronous I/0
Introduction to Asynchronous Programming
How Does async/await Work?

Serial Crawler
Gevent
Tornado
Aiohttp

Shared CPU-1/O Workload
Serial
Batched Results
Full Async

The multiprocessing Module
An Overview of the multiprocessing Module

Estimating Pi Using the Monte Carlo Method
Estimating Pi Using Processes and Threads
Using Python Objects
Replacing multiprocessing with Joblib
Random Numbers in Parallel Systems
Using numpy

Finding Prime Numbers
Queues of Work

Verifying Primes Using Interprocess Communication
Serial Solution
Naive Pool Solution
A Less Naive Pool Solution
Using Manager.Value as a Flag
Using Redis as a Flag
Using RawValue as a Flag
Using mmap as a Flag
Using mmap as a Flag Redux

Sharing numpy Data with multiprocessing
Synchronizing File and Variable Access
File Locking
Locking a Value

Clusters and Job Queues
Using Less RAM
Lessons from the Field

@ |
INNOVATIVE PLACEMENT SOLUTIONS

Top Companies Using ﬂ

e s ASANA

L1/
Q) 2,

& A o
s z
D): Prezi
2, )

e

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Python Django

Persistent Storage
Flat Text Files
Padded Text FilesTabular Text Files Top sites & products

CSV - XML, HTML built with Python & Django
JSON, YAML, Tablib
Pandas, Configuration Files
Binary Files
Padded Binary Files and Memory Mapping
Spreadsheets , HDF5, TileDB
Relational Databases D!SQUS
SQL, DB-API
sQLite , MysQL
PostgreSQL, SQLAlIchemy
NoSQL Datastores
The dbm Family
Memcached
Redis, Document Databases
Time Series Databases
Graph Databases
Other NoSQL
Full-Text Databases

Networks
TCP/IP
Networking Patterns
The Request-Reply Pattern
Zero MQ
Other Messaging tools

Lyft

The Publish-Subscribe Pattern
Redis
ZeroMQ
Other Pub-Sub Tools
Internet Services- DNS- Python Email Modules
Web Services and APIS
Data Serialization DEHFEF}" Hero
Serialize with pickle
Other Serialization Formats
Remote Procedure Calls
XML RPC- JSON RPC- Zerorpc- gRPC- Twirp

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Web applications and Services
HTML Web Development
CSS, JavaScript. SQL Databases (mysql)
NoSQL Databases (mongo db)

SQL Databases and Python (SQLAlchemy) Top sites & products

NoSQL Databases and Python (PyMongo) built with Python & Django
Responsive Web Design
Reactl)S
Introduction to Django
Introduction 6 SHUUP

Scaffolding a Django Project and App

Creating a Project and App, and Starting the Dev Server
Model View Template

Models

Views

Templates

Introduction to HTTP Courserq

Processing a Request

Django Project

The myproject Directory

Django Development Server

Django Apps

PyCharm Setup

Project Setup in PyCharm

View Details

URL Mapping Detail

Writing a View and Mapping a URL to It

GET, POST, and QueryDict Objects

Exploring GET Values and QueryDict

Exploring Django Settings- Using Settings in Your Code
Finding HTML Templates in App Directories
Creating a Templates Directory and a Base Template
Rendering a Template with the render Function
Rendering a Template in a View

Rendering Variables in Templates

Using Variables in Templates

Debugging and Dealing with Errors

Exceptions -Generating and Viewing Exceptions -
Debugging

Creating a Site Welcome Screen

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Customizing the Admin Interfaces

Serving Static Files

Introduction
Static File Finders
App Directories Finder

Top sites & products
built with Python & Django

Static File Namespacing

FileSystemFinder > Y
Custom Storage Engines
Forms
Introduction
The <form> element
Types of Input
Form Security with Cross-Site Forgery Protection
Accessing Data in the View
Choosing b/w GET and POST
Django Form's Library
Validating Forms & Retrieving Python Values

Advanced Form Validation and Model Forms Washington Post
Introduction
Custom Field Validation & Cleaning

Media Serving and File Uploads

Setting up Media Uploads & Serving

Context Processors & using MEDIA_URL in Templates
File Uploads using HTML Forms

Storing Files on Model Instances

Sessions and Authentication
Middleware Modules
Implementing Authentication Views & Templates
Password Storage in Django
The Profile Page
request.user in Django
Authentication Decorators - Redirection
Enhancing Templates with Authentication Data
Session Engine
Pickle or JSON Storage
Storing Data in Sessions

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

Models and Migrations

Introduction

Databases
Relational Databases
Non-Relational Databases Top sites & products
Database Operations built with Django & Python

Using SQL Data Types in Relational databases

SQL CRUD Operations
SQL Create Operations &
SQL Read Operations mdd lt
SQL Update Operations '
SQL Delete Operations
Django ORM
Database Configuration and Creating Django Applications
Django Apps
Django Migration
Creating Django Models and Migrations
Field Types

V4
Field Options h HEROKU

Relationships
One-to-One
Many-to-One
Many-to-Many
Django's Database
CRUD Operations

URL Mapping, View and Templates
Function Based Views
Class Based Views
URL Configuration
Templates

Django Template Language
Template Variables
Template Inheritances
Template Styling with Bootstrap

Introduction to Django Admin
Introduction
Creating a Superuser Account
CRUD Operations Using Django Admin App
Registering the Model

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

“Everyone in this country
should learn how to program
because it teaches you how

to think”

— Steve Jobs.

Advanced Django Admin & Customizations

Customizing Admin Site - .
Top sites & products

Adding Views to the Admin Site built with Python & Django

Advanced Templating & Class Based Views
Template Filters

Custom Template Filters ij B

itbucket
Template Tags
Django Views

Class Based Views

Generating CSV PDF and Other Binary Files
Working with Python's CSV Module

Working with Excel Files in Python

Working with PDF files in Python

Playing with Graphs in Python

Integrating Visualizations with Django Udemy
Testing

Automation Testing
Testing in Django

Testing Django Models
Testing Django Views
Django Request Factory
Test Case Classes in Django

Using Frontend JavaScript Libraries with Django
JavaScript Frameworks - React and its Components

www.ihubtalent.com




@ |
INNOVATIVE PLACEMENT SOLUTIONS

iHub’s KEY CLIENTS
100 + Clients and Adding More

F Nad Viﬁ‘ (Capgomini '0; Cigniti | |

OKENSIUM ‘ @Mﬁfﬂil‘ﬂ”ﬂﬂ‘

B Microsoft High Noon Corp. ‘ ewh‘!,‘

P iy A
PrimesSoft ¥ \aluelabs Vil .'1‘]?"[ e 3
\&"" -r.'-"';-
[_'MWM-EL Pl EHSGFT £ Practera SOLUGENIX ‘?ﬂ&?gﬁ
sunseaz [N {actiogica) | | amazon

achenis : geeeer  [GUEWEE erwm\
;Jmkigtﬁl.m”i i hLQDAL i I-Ht'ilﬂi 1: i_\hIEhF}dIUw‘

Inn ‘)1Frlsm ‘ |rr1ugrd r*fl ‘ ol t:]: fMed‘trnnlci
| |

Pormwtiryg b Dlgsal Fimi

——r———— ———— e e ———————

« TR ™

[ﬂ‘_,samsm '5ervmen w‘ ‘QSOLI:{ sapgmbaj_

mesleva dvi’lcrnn

QualBrain
Technologies

lll.l'-l'lr.l'lt

www.ihubtalent.com



OTHER JOB GUARANTEE COURSES

ADvANCED =) FULL STACK®:
'~ DATA SCIENCE 8 A &7 DIGITAL MARKETING

= :
lend  apmiong [N

A Cloud Data Inte gration

” -
“MERN “MEAN CLOUD
DEVLOPER DEVLOPER

0 v 6 & © O

iHub Talent

< 81069 61963

#515, Nilgiri Block, Beside Metro Station
www.ihubtalent.com Ameerpet, Hyderabad -16.




